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We study the problem of optimal recovery in the case of a nonsymmetric convex
class of functions. In particular we show that adaptive methods may be much better
than nonadaptive methods. We define certain Gelfand-type widths that are useful
for nonsymmetric classes and prove relations to optimal error bounds for adaptive
and nonadaptive methods. respectively. #1995 Academic Press, Inc.

1. INTRODUCTION

No approximation scheme can be good for every function /. We need
some a priori information about f of the form fe F. Usually one assumes
that fis an element of a certain Banach space X and so might have certain
smoothness properties. Then it is our task, for example, to find a good
approximation of the linear operator S: X — G such that

< I

HS(J‘)—‘ Z LAf)-g

i=1

< ¢, Hf“ X
G

holds with as small a ¢, as possible. Here the L, are linear functionals,
L;: X — R, for example, function values or Fourier coefficients.
Often, we perform a worst case analysis on a unit ball

F={feX|lflx<1}

which is convex and symmetric, i.e., —f€F if fe F. This approach is the
usual one in numerical analysis, at least if the solution operator is linear.
Also, most of the known results on optimal recovery and closely related
problems on sn-widths usually are studied under the assumption that the set
F of problem elements is convex and symmetric. [n many cases, however,
we have a different type of a priori information. We give some examples.
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OPTIMAL RECOVERY AND #-WIDTHS 391

Sometimes we know that f'is positive because, for example, f'is a certain
density function. In this case we should consider sets of the type

F={feX||flx<1,/20}.

Observe that such a set is still convex, but not symmetric. In other cases
we might know in advance that f is a monotone or convex function. This
also leads us to study convex classes of functions that are nonsymmetric.
The geometric information given by positivity, monotonicity, or convexity
is very important in some cases. If often helps to find an effective numerical
method, even if the problem is ill-posed without this information.

Therefore it is usually not a good 1dea to just ignore the additional infor-
mation about £ However, it may seem that it is still enough to study sym-
metric and convex sets—at least modulo some minor details. Let us again
consider the case where we want to approximate a linear operator S on F.
By taking F— F, defined by

F"—F—_—'{f1~f2|fl’f2€p}’

we clearly get a symmetric set and for each convex set £ we get the error
estimate

inf4%, (S, <inf4L F(S,)<4inf4al, (S, (1.1)
S Sn Sn

max max max

Here the maximal error is defined in the usual way by

Arflax(sn):sup ”S(f)—Sn(fm

feF
and the infimum runs through all methods of the form

Sn(f)=¢(Ll(f)s 3 Ln(f)) (12)

with nonadaptively chosen linear functionals L,; see Proposition 2. In the
symmetric case we know that such nonadaptive methods are almost
optimal in the class of all adaptive methods that use » linear functionals.

So we know that optimal error bounds for F and for F — F differ at most
by a factor of 4 in the case of nonadaptive methods and adaption does not
help (up to a factor of 2) for F — F. Therefore we can get much better error
bounds on F only if we allow adaptive methods. We will see later that for
some linear problems S: X — G and convex Fc X adaptive methods
actually are much better than nonadaptive ones. This also proves that an
inequality such as (1.1) does not hold if we allow adaptive methods.

We mention some of the literature in this subject. In the linear theory,
i.e., under the assumption that F is symmetric and convex, the close con-
nection between optimal recovery and n-widths or s-numbers is weli
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392 ERICH NOVAK

known; see Mathé [18], Micchelli and Riviin[19, 20], Novak [23],
Pinkus [29], Traub and Wozniakowski [36], and Traub, Wasilkowski,
and Wozniakowski [ 35]. Useful surveys on n-widths are Pietsch [27],
Pinkus [ 28 ], and Tikhomirov [34].

In the nonsymmetric case not so much is known. Some of the known
n-widths can also be defined in the nonsymmetric case, but there is no
theory of diameters in connection with optimal recovery, in particular
when adaptive methods are allowed. Some special problems, however, are
studied in the literature. The problem of optimal numerical integration of
monotone functions was studied by Kiefer [12] and Novak [24]. The
knots 7, may be chosen adaptively, ie., sequentially. Kiefer proved that the
best method is given by the trapezoidal rule. Hence we have an affine and
nonadaptive algorithm which is optimal. Observe that adaption does not
help in this case. This is also known for arbitrary linear S: F— R in the
case where F is convex and symmetric; see Bakhalov [3].

In the present paper we study the question of whether adaption can help
if F is only convex. Also, in some other papers linear problems (such as
integration or optimal reconstruction in L -norm) have been studied for
certain nonsymmetric convex classes of monotone or convex functions. We
mention the papers of Bra3 [6], Glinkin [ 8, 9], Novak [25], Petras [26],
and Sonnevend [30].

Different nonsymmetric extremal problems in approximation theory
were investigated by Babenko [1,2], Gal and Micchelli [7], loffe and
Tikhomirov | 10], Korneichuk [15], Magaril-llyaev and Osipenko [17],
Sukharev [31], and Sun [32]. We are mainly interested in the following
question, where the worst case setting is studied for linear problems: Can
adaption help {much) on a convex class of functions? Much is known
about linear problems

S:X—Y,

when considered on a symmetric and convex set F < X in the worst case.
A slight superiority of adaptive methods can be proven in some cases even
if F is symmetric; see Kon and Novak [ 13, 147]. It is well known, however,
that adaption cannot help much in that case. Although adaptive methods
are widely used, most theoretical results show that adaption does not help
under various conditions.

It is known, however, that there are examples of a convex and nonsym-
metric set ¥, where adaption helps considerably; see Novak [25] and
Section 4. In this paper we define certain new “Gelfand-type” n-widths that
turn out to be important for the study of linear problems on convex
domains. We study the connection between these n-widths and problems of
optimal recovery.
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We believe that it is important to calculate the n-widths for standard
classes of nonsymmetric sets, for example, sets of the type

{f:[O,l]—»R

T, <1 feClLo ) 17200,

This would be useful for the construction of efficient algorithms for many
practical problems.
In Section 5 we study the case where only methods of the form

SEV) = @S0, . SU1)),

with function values instead of general linear functionals, are admissible. In
this case adaption can help even more. An artificial example with exponen-
tial improvement is presented. A recent example from Korneichuk [16]
which also shows that adaption can help is given.

2. DIAMETERS FOR NONSYMMETRIC SETS

We want to know whether adaption can help for linear problems on a
convex set of functions. We begin slightly more generally and first define
certain diameters that are interesting in the case where F is not symmetric.

Let X be a Banach space over R and let F< X be convex. We first
assume that F is also symmetric, ie., fe F implies —fe F. The Kolmogorov
n-width of Fin X is given by

dn(F):lnfsup inf Hf—gH* (21)

Xn feF ge X,

where the left infimum is taken over all n-dimensional subspaces X, of X.
Similarly, the Gelfand n-width of F is given by

d"(Fy=inf sup {f]. (2.2)

Uy feFa Uy

where the Infimum is taken over all closed subspaces U, of X with
codimension n. These numbers measure the “thickness” or “massivity” of F.

In the case of arbitrary {in particular: nonsymmetric) sets F < X these
definitions seem to be inadequate. The widths should be translation-
invariant; therefore the Kolmogorov n-width (for arbitrary F< X'} should
be given by

d,(F)=ifsup nf || f—gl, (2.3)

Xy feFgelky
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, runs through all n-dimensional affine subspaces of X, see
Tikhomirov [33]. For a convex and symmetric set F< X, (2.2) can be
rewritten as

where X,

d"(F)= 1 infdiam(Fn U,).
Un

Here, diam(B) means the diameter of a set B, defined by

diam(B)= sup [|f—gll.

f.geB

It is interesting to note that this definition (for symmetric sets) can be
extended to arbitrary sets in two different ways. Both of them are inter-
esting—at least if we are thinking of applications in the field of optimal
recovery. A “global” variant of the Gelfand width (for arbitrary F) is given
by

dr

glob

(F)y=1.infsup diam(Fr(U,+/)) (2.4)

Uy, feX

(a slightly different notion is defined in loffe and Tikhomirov [ 10]), while
a “local” variant is given by

(1 n

loc

(F)=1.supinfdiam(F n (U, + f)). (2.5)

JeX Uy
Both these widths are translation-invariant, and we always have

a’ n

loc

(Fy<dy (F). (2.6)

glob

If Fis convex and symmetric, then

d(F)=dy,,(F)=d;

loc

(F). (2.7)

The widths defined by (2.3)-(2.5) do not increase if F is replaced by its con-
vex hull. Therefore we can and will assume that F is convex. In this case
the sup over X in (2.4) and (2.5) clearly can be replaced by a supremum
over F. The global and local Gelfand widths are related to the problem of
optimal recovery using nonadaptive or adaptive methods, respectively; see
Section 3. Therefore for the adaption problem the following question is
interesting. Can the number &}, (F) be much smaller than d§, ,(F)?

loc

It is useful to study the function

fe Fr Yinf diam({(U, + f) 0 F).
Un
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A maximum f* of that function is called a worst element of F. If, in
addition,
d"

glob

(F)=jinfdiam((U, +f*) " F),
Un

then /* is called a center of F. In this case we have

d”

loc

(F) = dglob(F)‘

If F is convex and symmetric, then 0 is a center of F. This follows from the
fact that

diam{((U,+f)n Fy=diam((U,— f)n F) < diam(U, ~ F)

for such an F. Not every convex set has such a center. It is interesting to
know whether every convex set F can be increased slightly such that the
bigger set has a center. We will see that this is not the case.

There are many papers and also books on n-widths. Nonsymmetric sets
have rarely been studied so far, however. This seems to be related to the
fact that for Kolmogorov widths and global Gelfand widths nonsymmetric
sets do not yield very interesting results. By this we mean the following. Let
F< X be convex (and nonsymmetric). Then the symmetric set

F—F={fi—f,|feF}

is the smallest symmetric set that “contains” F (more exactly: F—F
contains a translation of F). The following result says that the n-widths of
F and its symmetrization F— F differ at most by a constant of two.

PROPOSITION 1. Let Fc X be convex. Then
d{Fy<d(F-F)<2d,(F),
where d,, is as given in (2.3), and
dr

glob

(F)<d™(F-F)<2d®

glob

(F). (2.8)

Proof. We only give the proof of (2.8). The inequalities for the
Kolmogorov widths are even easier to prove. Assume that U, is a closed
subspace of X with codimension » such that

d=supdiam((F— F)n{(U,+f)).

feX
For any fixed f, € F we get
oz supdiam((F—f;) n (U, + f))=sup diam(F (U + ).

feX fex

&4) 80 A8
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This proves d% . (F)<d"(F—F). Let U, be such that

glob

o =supdiam{(Fn (U, + f)).

feXx

Each f*e(F—F)n U, can be written as f* = f, — f, with f,e F and also
f;eU,+ f. Because of the assumption we obtain [f*|| <diam(Fn
(U, + f))< 6. Hence

diam((F~F)n U,) < 26.
Because F— F is symmetric we can conclude that
diam((F—-Fyn(U,+ f) <26

for each f and therefore d"(F — F)=d"

glob

(F—Fy<2d”,,(F). }

glob

Such a result does not hold for the local widths. The following example
also shows that the local widths can be much smaller than the global
widths.

ExamprLe 1. Let X=/_ and

F= {.\'eX|.\',>O, Y x,gl}

i=1
Then we have
d’g’lub(F) = %

for every ne N and also d"(F— F)=1. For the local widths of F, however,
we obtain

Proof. Because diam(F)=1 we certainly have dj,(F)<j; and
d"(F—F)<1 for all ne N. One can also prove that d"(F— F)> 1. Because
I did not find a reference for this result, I sketch a proof using results
and notation of Section 4. There we prove e7,(S|z) =3, the statement
en(Slp_py=en (S|p_p)=1 can be proved analogously or even more
easily. Proposition 3 then implies d"(F—F)>1. Hence we obtain
d7 . (F)=14 from (2.8).

Now we study the local widths. Consider the set

{xel.|x,e[0,Y(n+1)]fori=1,..,n+1,and x,=0fori>n+1} cF.
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This set i1s (up to translation) an (»+ l)-dimensional ball of diameter
1/(n+ 1), and it is well known that the n-width of such a set is 1/(2n+ 2).
It then easily follows that

1" (F)> .
SRS

Now fix an xe F. There is a partition N=N, U N,u --- UN, with the
property that for each k& either N, contains only one number or

It is clear that the N, and the L, depend on xe F. Assume that y € F with
L.(y)=L,(x) for all k. It follows, in particular, that for any ; we have
y;=x;or y;e{0,2/(n+1}]. We obtain

2
n+1

diam(Fn{y | Ly(y)=Lyx) k=), .. n})<

and this implies
I

i )
¢ n+1

loc

(F)< |

Remark. We have seen that the local widths can be much smaller than
the global widths. Is there a bound on how much smaller they can be? In
other words, is there an inequality of the form

‘i”

glob

(Fy<e, dl_(F) (2.9)

loc

with a sequence ¢, that is independent of F? If this is the case then of
course it would be interesting to know the best inequality of the form (2.9).
Actually we conjecture that Example | is the most extreme example in the
sense that dglob(F )= O(n-di (F))is always true. This is a deep problem

which seems to be related to a conjecture of Mityagin and Henkin [21],
see also [47. which is still open.

3. DIAMETERS OF MAPPINGS AND OPTIMAL RECOVERY

Now we define the widths of S|, where S: X — Y is a continuous linear
mapping into a normed space Y. We use the notation

d,(S|y=infsup inf [S(f)—gl, (3.1)

Yo feF geY,



398 ERICH NOVAK

where Y, runs over all n-dimensional affine subspaces of Y, for the
Kolmogorov widths. The global Gelfand width (for arbitrary F< X)) is
given by

(111

glob

(S|p) =% -infsup diam(S(F (U, + f))). (3.2)

U, feX
while a “local” variant is given by

al "

loc

(S|p) =1 sup infdiam(S(FA (U, + f))). (3.3)

fex U,

Here the infimum is taken over closed subspaces U, of X of codimension
at most #. Now an f* can be called a worst element if the supremum in
{3.3) is attained for f*. If in addition, the local width equals the global
width then f* is a “center” of F with respect to S. This case is similar to
the symmetric case insofar as then adaption can help at most by a factor
of two; see Proposition 3. It is useful in what follows to define Bernstein
widths. The idea of these widths was already used in the proof of Proposi-
tton 1 and in Example 1. Here the definition is

b,(S|z) =sup{r | S(F)contains an (n + 1 )-dimensional ball with radius r}.
Observe that in the case S=1d: X — X we obtain
SU(S‘ I) = 'YH(F)~

where s, is one of the widths considered here. This means that the
diameters of sets are just special cases of this more general notion.

We study the problem of optimal recovery of S(f) for fe F< X, if only
{adaptive or nonadaptive) information of the form

N =(Li(f) Lo ) L0 )

is available. Each method is of the form S§*=¢- N with some ¢: R" > Y
and we want to minimize the maximal error

Apman (S37) = sup |S(f) = SN
JfeF

In this section we assume that the L, are arbitrary linear continuous func-
tionals L;: X — R. In the adaptive case the choice of L, may depend on
Li(f), ... L,_{f). See, for example, Traub, Wasilkowski, Wozniakowski
[35] for the exact definitions and known results. If we consider only
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methods S, = ¢ - N with a fixed information mapping N, then we obtain the
radius of N by

rad(N, F)=inf 4, (¢ - N).
P

In connection with Proposition 1 we have the following result.

PROPOSITION 2. Assume that N: X — R" is nonadaptive information.
Then we have

rad(N, Fy<rad(N, F—- Fy<4rad(N, F).
Proof. This just follows from
rad(N, F) <rad(N, F— F)y<diam(N, F— F}
£ 2 diam(N, F)<4 rad(N, F),
where diam(N, F) 1s defined by
diam(N, F) = sup diam{ Sf | Nf=y}.
The constant 4 is probably not oﬁtimal here. |}
In the following we want to compare the numbers

el {(S|py=mfa_,(S,)

non

with the numbers
e;'d(Slp) = infd“"‘“‘(sid)’

where S, runs through all nonadaptive methods and S2¢ runs through all
adaptive methods using information N consisting of » linear functionals.
We always assume that F is convex. First we note a connection between
these error bounds and the Gelfand widths. We skip the simple proof.

ProrosITION 3. Let Fc X be a convex set and let S: X — Y be linear
and continuous. Then

3 Ao (S1p) S €8, (S1p) S d iy (Sl 5)

non

and

Iid;lm.(S’l') se:«:d(s‘]l’)
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Remarks. (a) Assume that Fis convex and symmetric. Then the result
is well known. Because of (2.7) we have

d;l()b(sl F) = d;l(\(,(Sl P')

in this case and it follows that adaption can help only by a factor of two
since

€ron(S1p) Sd (S| p) = di (S]) < 2e5,(S] ).

non oc

This is known from [7,36]. See Kon and Novak [13, 14] and Traub,
Wasilkowski, Wozniakowski [ 35] for further results.

{b) In the next section we will present examples where adaptive
methods are much better than nonadaptive ones.

4. ON THE ADAPTION PROBLEM

Our next example shows that adaptive methods may be much better
than nonadaptive methods. This example was constructed to demonstrate
the superiority of adaptive methods. We do not know, whether it is “worst
possible” for nonadaptive methods. We mention that a similar example is
contained in Novak [25].

ExampLE 2. Let X=/, and

X
F= {xeX{ 20, Y x< l,xkz,rzk,.xkz.\:ZH,}

i=1

Let ¢ be the sequence defined by ¢} = J,.. For me N we obtain
e'imeF—F, i=1,..,2"" "

Now we use a result of Kashin (11] (see Pinkus [28]) on the Gelfand
numbers of the octahedron O,={xeR”|Y |x[<1} in the / -norm,
namely

d"(0,,) = 1//n.

Therefore for m e N we conclude that

!

C

ym -2 1 am-2
d¥ (F—F)>—-d” (Op )2 555
2™m

mn
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From this we easily derive the lower bound

dgon(F) = d"(F—F) >

\/— log n
for the global Gelfand width of F. For the local widths we clearly have the

estimate

1
S+ 2

dio(F) <

since F is contained in the set which was studied in Example 1. Assume
now that we want to reconstruct xe F in [/ -norm using (adaptively or
nonadaptively) linear functionals as information. That is, $=1d. For the
error of optimal nonadaptive methods we have the lower bound

Sl d"

glob
ﬂ log n

Now we describe an adaptive method which is much better. For simplicity
we assume here that n=2m—1 is odd. By 4, we mean the functional
8,(x)=x,;. First we describe the functionals L, which are of the form
L.=46,. Take L, =46,. Suppose that L,(x)=x, are already computed for
1 €i< 2k — 1. Define

Je= (e sl 1} 1278 (s by} }

non(

and
Jx =min {jGJA | x; —mdx \,}
eJi
Take Lo, =0y, and Ly =085, .. 1e, Iy =2j, and I, =2/, +1. We
obtain

e =T V{2, 2+ TNk}
and from x, = x,, and x, = x,, ,, we conclude that
Vi1 S Xy

We consider the adaptive information

N (x)=(L;(x), .., L (x))= (Xp5 o -\’f,,)

= (¥, X2, X3, Xojps Xapa 10 s Xog, 1)
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The /, are distinct because, aside from /,, they come in pairs of the form 2j,
and 2j, + 1, where 2j, is always an index not chosen before.

The set J, has the following property. Assume that / is any coordinate
not contained in {/,,/,, .,y _,}. Then there is a jeJ, with x;<x,.
The simple proof of this fact would use induction and a partial order
on N, defined by the dyadic expansion. Consider, for example, the case
where /=86 is not contained in {/,, /5, .., {5 _,}. Then, depending on k,
exactly one of the indices 1, 2, 5, 10, 21, or 43 is in J, and the respective
coordinate is at least as large as x,. In particular we obtain x,<x,
andjké']k+]-

Together with (4.1) this means that x, < x, for at least & distinct values
of j and we obtain

So for n=2m—1 we get x,<1/(m+1)=2/(n+3) for all / different from
the x,, .., x,,. Hence we can reconstruct x from the information N, up to
an error of 1/(Zm+2)=1/(n+3), i.e,, we have found a method with

Aan (S3) < 1f(n +3).

ExaMpPLE 1 (continuation). In Proposition 3 we obtained only a one-
sided estimate of the error of optimal adaptive methods through the
local widths. Can we also prove an upper bound for the error of optimal
adaptive methods through the local widths? To answer this question
it is enough to study S=1Id: F—/_, where Fis as in Example 1. We claim
that

el SF) =1
holds for all n. This means that we have an example with el (S|,) =<
n-dp, (S{g).

Proof. Because diam(F)=1 it is enough to show that e’ (S|z)=3.
Assume that N: F— R" is some adaptive information. We have to prove
that

sup diam{xe F| N(x)=z} =1.

zeR"
For each xe F, let

Nix)=(L(x), .. L,(x)),
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where L; depends on L,, .., L,_, and on the values L,(x), .., L,_,(x). The
L, can also be considered as functionals on ¢,, the space of convergent
sequences, and therefore are of the form

Lix)=7Y ajx; (forxeF)

with (a}); n€/,. Now let j, be an index such that
la) | > a}| for all /.
We can assume that the functional L, has the form
Li(xy=x,+ Y aj‘.,\‘j (4.2)
P

with |a_}| <1 for all j. Observe that (4.2) is true for all x e F:= F, because
the first functional L, is independent of x. Consider the x e F,, for which
L,(x)=c, for some small positive ¢, and put

Fii={xeFy|Li(x)=c}.
For our later analysis it is convenient to assume that
c,=3""".4,
where 6 > 0 is sufficiently small that
203" 15 < L (4.3)

In this case the set F, is not empty. The second functional L, is well-
defined on F, since it only depends on L, and ¢;. We can assume that this
linear functional is of the form x— ¥ | a7 x, with a; =0. If a; # 0 then we
can consider L,+al, instead of the original L, without essentially
changing the information operator. By multiplying with a constant we now
even assume that

Lyxy=x,+ Y ax

BRI
with a7 <1 for all j. Let
c;=3""%.9

and consider the set
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The set F, is nonempty since there is a (unique) x € F, whose only nonzero
coordinates are x, and x,,. The functional L, is well-defined on F, since it
only depends on L, L,, ¢,, and ¢,. For general £ we define

Fo={xeF | Li(x)=¢d,

where L, is the next functional dependent on L, .., L, , and ¢, .., ¢;
and ¢, is defined by

=3"*.6. (4.4)

The set F, is not empty since there is a (unique) x € F, whose only nonzero
coordinates are x;, .., X,.
We can and will assume that each L, is of the form

Li(x)=x,+ Y dix

FE R

with distinct j, and |af] <1 for all ).
Let k, be an index for which the coordinates aj are small for all
i=1,..n ie.,

|ag | <6 for i=1,..n (4.5)

The sequences {a'), are in ¢, and therefore such an index &, clearly exists.
We consider a sequence x with nonzero coordinates x,, .., x, and x, =
ce[0,1]; ie., we assume that x,=0 for all other /. We also assume that

Lix)=¢ (i=1, ..,n).
It is easy to see that the sequence xe/, 1s uniquely defined by these

requirements for each given ¢. The nonzero coordinates of the sequence x
are given by the linear system

. P . \
'X/n - ak,,( + ¢ n
n—1. - o an- 1, .
aj}. '\.l'n + ’\Jn/ [ ak,, c+ n—1
1., 1 . 1., . [ SN .
a; X, td; (X,  tootapx,tx, = —a ot

We also have x; = ¢ while all other coordinates are zero. By (4.5) and
0 < ¢ <1 we know that all terms of the form |a; ¢| are bounded by 6. Using
(4.4), for the unique solution of the system we get the estimates
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0<x, <20
0<x, <60

-1

O<x, <2.-37°16

Kl

We obtain

Y x,<2n.3"13

/=1
and conclude from (4.3) that xe F, for all c=x, with
O0<e<l—2n-3""16.

Thus sup_, g.diam{xe F| N(x}=z} 21-—-2n-3""'6 for each 6>0 as in
{4.3). Letting  — 0, we obtain our resuit. |

5. THE CASE OF RESTRICTED INFORMATION

In many practical cases, X 1s a Banach space of functions and only cer-
tain linear functionals are available as information. Here we only consider
the case where all functionals

o, feX—flx)eR

are continuous and form the set of available functionals; i.e., each L; is of
the form L,=d,. Hence we study methods of the form

SNy =G f1)), o f11,)) (5.1)

and define the error bounds

& (S| =inf 4., (S,)
Sn

non
and

ggd(S|F) =1:812£Amax(s:d)*

where the infimum runs through all nonadaptive or adaptive methods of
the form (5.1), respectively. Here we only give some examples and therefore
we do not define any new n-widths with a restriction to the type of
admissible subspaces. The numbers &7 (S|;) can be estimated from

non
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above by the Kolmogorov widths 4,(F), even if S is nonlinear; see
Novak [ 22, 23]. The estimate for the case of a linear functional was also
found by Belinskii [5].

The following example shows that adaptive methods may be exponen-
tially better than nonadaptive ones.

ExaMmpLE 3. Again we consider S=1d: F—{, with

s
F= {-"EX!X.'>0s )y »\',é1»-"";\'2-\'21\»’—"1\-?"'21(“}»

i=1
but now we only allow methods of the form (5.1). We already proved that

1

~n VL
("“‘(Sl"}\nJrB

and it is not difficult to see that the nonadaptive information
Nn(’x) = (-“l’ X s Xn)

is optimal among all nonadaptive information operators. It follows, in
particular, that

{
el (Slp) =< ——.
Chon(S14) log(n + 1)

ExaMPLE 4. We mention the following example from Korneichuk [16],
which is closer to the standard classes of approximation theory. Consider
the reconstruction problem S=1Id: F— L ([0, 1]) for

F={f:[0,11-1[0,1]]fmonotone and |f(x)— f{y)| < |x— y|*}

with 0 <a < 1. This problem can be solved adaptively using the bisection
method, while nonadaptive methods are worse. Korneichuk [ 16} proved,
more exactly, that

é" (S|y)=n"* while & (S)p)=<n""logn

non
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