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We study the problem of optimal recovery in the case of a nonsymmetric convex
class of functions. In particular we show that adaptive methods may be much better
than nonadaptive methods. We define certain Gelfand-type widths that are useful
for nonsymmetric classes and prove relations to optimal error bounds for adaptive
and nonadaptive methods, respectively. 1995 Academic PreS'. Inc

1, INTRODUCTION

No approximation scheme can be good for every functionf We need
some a priori information about lof the form IE F. Usually one assumes
that I is an element of a certain Banach space X and so might have certain
smoothness properties. Then it is our task, for example, to find a good
approximation of the linear operator S: X -> G such that

holds with as small a ('II as possible. Here the L i are linear functionals,
L i : X -> R, for example, function values or Fourier coefficients,

Often, we perform a worst case analysis on a unit ball

F= {/EXlll/llx';;; 1}

which is convex and symmetric, i.e., -IE F if IE F. This approach is the
usual one in numerical analysis, at least if the solution operator is linear.
Also, most of the known results on optimal recovery and closely related
problems on n-widths usually are studied under the assumption that the set
F of problem elements is convex and symmetric. In many cases, however,
we have a different type of a priori information. We give some examples.
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Sometimes we know that I is positive because, for example, 1 is a certain
density function. In this case we should consider sets of the type

F= {IE X Illfllx~ IJ~O}.

Observe that such a set is still convex, but not symmetric. In other cases
we might know in advance that I is a monotone or convex function. This
also leads us to study convex classes of functions that are nonsymmetric.
The geometric information given by positivity, monotonicity, or convexity
is very important in some cases. If often helps to find an effective numerical
method, even if the problem is ill-posed without this information.

Therefore it is usually not a good idea to just ignore the additional infor
mation about f However, it may seem that it is still enough to study sym
metric and convex sets-at least modulo some minor details. Let us again
consider the case where we want to approximate a linear operator Son F
By taking F - F, defined by

F - F= {II - 12 I11,12 E F} ,

we clearly get a symmetric set and for each convex set F we get the error
estimate

(1.1 )

Here the maximal error is defined in the usual way by

L1 ~ax (S,,) = sup II S(f) - S" (f) II
rEF

and the infimum runs through all methods of the form

S" (f) = rjJ( L I (f), ..., L" (f)) (1.2 )

with nonadaptively chosen linear functionals L;; see Proposition 2. In the
symmetric case we know that such nonadaptive methods are almost
optimal in the class of all adaptive methods that use n linear functionals.

So we know that optimal error bounds for F and for F - F differ at most
by a factor of 4 in the case of nonadaptive methods and adaption does not
help (up to a factor of 2) for F - F Therefore we can get much better error
bounds on F only if we allow adaptive methods. We will see later that for
some linear problems S: X --> G and convex Fe X adaptive methods
actually are much better than nonadaptive ones. This also proves that an
inequality such as (1.1) does not hold if we allow adaptive methods.

We mention some of the literature in this subject. In the linear theory,
i.e., under the assumption that F is symmetric and convex, the close con
nection between optimal recovery and n-widths or s-numbers is well
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known; see Mathe [18], Micchelli and Rivlin [19,20], Novak [23],
Pinkus [29], Traub and Wozniakowski [36], and Traub, Wasilkowski,
and Wozniakowski [35]. Useful surveys on n-widths are Pietsch [27],
Pinkus [28], and Tikhomirov [34].

In the nonsymmetric case not so much is known. Some of the known
n-widths can also be defined in the nonsymmetric case, but there is no
theory of diameters in connection with optimal recovery, in particular
when adaptive methods are allowed. Some special problems, however, are
studied in the literature. The problem of optimal numerical integration of
monotone functions was studied by Kiefer [ 12] and Novak [24]. The
knots t; may be chosen adaptively, i.e., sequentially. Kiefer proved that the
best method is given by the trapezoidal rule. Hence we have an affine and
nonadaptive algorithm which is optimal. Observe that adaption does not
help in this case. This is also known for arbitrary linear S: F ~ R in the
case where F is convex and symmetric; see Bakhalov [3].

In the present paper we study the question of whether adaption can help
if F is only convex. Also, in some other papers linear problems (such as
integration or optimal reconstruction in L" -norm) have been studied for
certain nonsymmetric convex classes of monotone or convex functions. We
mention the papers of BraG [6], Glinkin [8, 9], Novak [25]. Petras [26],
and Sonnevend [30].

Different nonsymmetric extremal problems in approximation theory
were investigated by Babenko [1,2], Gal and Micchelli [7], loffe and
Tikhomirov [10], Korneichuk [is], Magaril-Ilyaev and Osipenko [17],
Sukharev [31 J, and Sun [32]. We are mainly interested in the following
question, where the worst case setting is studied for linear problems: Can
adaption help (much) on a convex class of functions? Much is known
about linear problems

S:X~ Y,

when considered on a symmetric and convex set Fe X in the worst case.
A slight superiority of adaptive methods can be proven in some cases even
if F is symmetric; see Kon and Novak [13, 14]. It is well known, however,
that adaption cannot help much in that case. Although adaptive methods
are widely used, most theoretical results show that adaption does not help
under various conditions.

It is known, however, that there are examples of a convex and nonsym
metric set F, where adaption helps considerably; see Novak [25] and
Section 4. In this paper we define certain new "Gelfand-type" n-widths that
turn out to be important for the study of linear problems on convex
domains. We study the connection between these n-widths and problems of
optimal recovery.
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We believe that it is important to calculate the n-widths for standard
classes of nonsymmetric sets, for example, sets of the type

This would be useful for the construction of efficient algorithms for many
practical problems.

In Section 5 we study the case where only methods of the form

S:,ad\f) = 1(/( / I), ...J( /,,)),

with function values instead of general linear functionals, are admissible. In
this case adaption can help even more. An artificial example with exponen
tial improvement is presented. A recent example from Korneichuk [ 16]
which also shows that adaption can help is given.

2. DIAMETERS FOR NONSYMMETRIC SETS

We want to know whether adaption can help for linear problems on a
convex set of functions. We begin slightly more generally and first define
certain diameters that are interesting in the case where F is not symmetric.

Let X be a Banach space over R and let Fe X be convex. We first
assume that F is also symmetric, i.e., f E F implies -fE F. The Kolmogorov
n-width of F in X is given by

d,,(F)=infsup inf Ilf-gll,
Xli IEF~EX"

(2.1 )

where the left infimum is taken over all n-dimensional subspaces X" of X.
Similarly, the Gelfand n-width of F is given by

d"(F) = inf sup il/ll,
U" JEFn Un

(2.2 )

where the infimum is taken over all closed subspaces U" of X with
codimension n. These numbers measure the "thickness" or "massivity" of F.

In the case of arbitrary (in particular: nonsymmetric) sets Fe X these
definitions seem to be inadequate. The widths should be translation
invariant; therefore the Kolmogorov n-width (for arbitrary Fe X) should
be given by

d,,(F)=infsup inf III-gil, (2.3)
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where XII runs through all n-dimensional affine subspaces of X; see
Tikhomirov [33]. For a convex and symmetric set Fe X, (2.2) can be
rewritten as

dll(F) = ~. infdiam(Fn VII)'
- (..i"

Here, diam( B) means the diameter of a set B, defined by

diam(B)= sup IIf-gil.
f. gE B

It is interesting to note that this definition (for symmetric sets) can be
extended to arbitrary sets in two different ways. Both of them are inter
esting-at least if we are thinking of applications in the field of optimal
recovery. A "global" variant of the Gelfand width (for arbitrary F) is given
by

d~lob(F) =!. infsup diam(Fn (VII +Il)
Un fEX

(2.4 )

(a slightly different notion is defined in loffe and Tikhomirov [10]), while
a "local" variant is given by

d;:)c(F) = ~. sup infdiam(Fn (VII + Il)'
fEX Un

Both these widths are translation-invariant, and we always have

If F is convex and symmetric, then

(2.5 )

(2.6)

(2.7)

The widths defined by (2.3 )-( 2.5) do not increase if F is replaced by its con
vex hull. Therefore we can and will assume that F is convex. In this case
the sup over X in (2.4) and (2.5) clearly can be replaced by a supremum
over F The global and local Gelfand widths are related to the problem of
optimal recovery using nonadaptive or adaptive methods, respectively; see
Section 3. Therefore for the adaption problem the following question is
interesting. Can the number d~oc(F) be much smaller than d~lob(F)?

It is useful to study the function

fE F'r---'> ~ inf diam(( VII +Il n F).
Un
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A maximum f* of that function is called a worst element of F. If, in
addition,

then f* is called a center of F. In this case we have

d;~c(F) = d;lob(F).

If F is convex and symmetric, then 0 is a center of F. This follows from the
fact that

diam(( V,,+f)n F)=diam(( V,,- f) nF) ,,:;diam( V"nF)

for such an F. Not every convex set has such a center. It is interesting to
know whether every convex set F can be increased slightly such that the
bigger set has a center. We will see that this is not the case.

There are many papers and also books on n-widths. Nonsymmetric sets
have rarely been studied so far, however. This seems to be related to the
fact that for Kolmogorov widths and global Gelfand widths nonsymmetric
sets do not yield very interesting results. By this we mean the following. Let
Fe X be convex (and nonsymmetric). Then the symmetric set

is the smallest symmetric set that "contains" F (more exactly: F - F
contains a translation of F). The following result says that the n-widths of
F and its symmetrization F - F differ at most by a constant of two.

PROPOSITION 1. Let Fe X be convex. Then

<I,,(F)":; <I,,(F -F)":; 2<1" (F),

where <I" is as given in (2.3), and

(2.8)

Proof We only give the proof of (2.8). The inequalities for the
Kolmogorov widths are even easier to prove. Assume that VII is a closed
subspace of X with codimension n such that

15 = sup diam((F - F) n (VII +f)).
fEX

For any fixed fl E F we get

15:;:, sup diam((F - fl) n (VII +f)) = sup diam(F n (V +f)).
~x ~x
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This proves d;lob(F):::; d"(F - F). Let V" be such that

15 = sup diam(Fn (V" + f)).
(EX

Each f* E (F - F) n V" can be written as f* = fl - f2 with fi E F and also
;; E V" + f Because of the assumption we obtain Ilf* II :::; diam( F n
(V" + f)):::; J. Hence

diam((F-F)n V,,):::;2J.

Because F - F is symmetric we can conclude that

diam( (F - F) n (V" + f)) :::; 215

for eachfand therefore d"(F-F)=d;lob(F-F)~2d;lob(F). I

Such a result does not hold for the local widths. The following example
also shows that the local widths can be much smaller than the global
widths.

EXAMPLE I. Let X = I., and

F={XEXlx{~o,I Xi:::; I}.
1= I

Then we have

for every 11 E N and also d"(F - F) = 1. For the local widths of F, however,
we obtain

Proof Because diam(F) = 1 we certainly have d;lob(F):::; ~ and
d"(F - F) ~ 1 for all 11 E N. One can also prove that d"(F - F) ~ 1. Because
I did not find a reference for this result, I sketch a proof using results
and notation of Section 4. There we prove e:d (51 F) = L the statement
e:d (51 F~ F) = e~on (5/ F_ F) = 1 can be proved analogously or even more
easily. Proposition 3 then implies d"(F - F) ~ 1. Hence we obtain
d;lob(F) = ~ from (2.8).

Now we study the local widths. Consider the set

{X E I", I Xi E [0, 1/(11 + 1)J for i = 1, ... , 11 + 1, and Xi =°for i> 11 + I} c F.
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This set is (Up to translation) an (n + I )-dimensional ball of diameter
II( n + I), and it is well known that the n-width of such a set is II( 2n + 2).
It then easily follows that

Now fix an x E F. There is a partition N = N, U N 2 U ... u Nn with the
property that for each k either N k contains only one number or

2
LJx):= I x; ~--.

IE Nk n + I

It is clear that the Nk and the L k depend on x E F. Assume that y E F with
Ldy)=Ldx) for all k. It follows, in particular, that for any i we have
YI=X I or y;E[O,2/(n+ I)]. We obtain

diam( F n {y I Lk ( y) = L k ( x), k = I, ..., 12} )~ 12 ~ I

and this implies

Remark. We have seen that the local widths can be much smaller than
the global widths. Is there a bound on how much smaller they can be? In
other words, is there an inequality of the form

d~lob(F)~ Cn ' d;:>e(F) (2.9)

with a sequence Cn that is independent of F? If this is the case then of
course it would be interesting to know the best inequality of the form (2.9).
Actually we conjecture that Example I is the most extreme example in the
sense that d~lob(F) = O( n . d;:,c (F)) is always true. This is a deep problem
which seems to be related to a conjecture of Mityagin and Henkin [21 ],
see also [4], which is still open.

3. DIAMETERS OF MAPPINGS AND OPTIMAL RECOVERY

Now we define the widths of S/ r-, where S: X --+ Y is a continuous linear
mapping into a normed space Y. We use the notation

dn(SIr-)=infsup inf IIS(f)-gll, (3.1 )
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where Y" runs over all n-dimensional affine subspaces of Y, for the
Kolmogorov widths. The global Gelfand width (for arbitrary Fe X) is
given by

d~lob (SI r) = !. inf sup diam(S(F n ( U" +f))),
UN lEX

while a "local" variant is given by

d;;)c(Slr) =!. sup inf diam(S(Fn (U" +Il)).
IE x l/n

(3.2 )

(3.3 )

Here the infimum is taken over closed subspaces U" of X of codimension
at most n. Now an I* can be called a worst element if the supremum in
(3.3) is attained for I*. If, in addition, the local width equals the global
width then I* is a "center" of F with respect to S. This case is similar to
the symmetric case insofar as then adaption can help at most by a factor
of two; see Proposition 3. It is useful in what follows to define Bernstein
widths. The idea of these widths was already used in the proof of Proposi
tion 1 and in Example 1. Here the definition is

b" (SIF) = sup{ r IS(F) contains an (n + I )-dimensional ball with radius r}.

Observe that in the case S = Id: X -+ X we obtain

where S" is one of the widths considered here. This means that the
diameters of sets are just special cases of this more general notion.

We study the problem of optimal recovery of S(f) for IE Fe X, if only
(adaptive or nonadaptive) information of the form

is available. Each method is of the form S~d = rP N with some rP: R" -+ Y
and we want to minimize the maximal error

dmax(S:,d) = sup IIS(f) - S:.d(f) II.
IEF

In this section we assume that the L; are arbitrary linear continuous func
tionals L;: X -+ R. In the adaptive case the choice of L i may depend on
L} (f), ... , L i _ 1(f). See, for example, Traub, Wasilkowski, Wozniakowski
[35] for the exact definitions and known results. If we consider only
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methods Sn = ¢J 0 N with a fixed information mapping N, then we obtain the
radius of N by

radiN, F)=inf Amax(¢JuN).
<I

In connection with Proposition I we have the following result.

PROPOSITION 2. Assume that N: X ~ R" is nonadaptive information.
Then we have

rad( N, F) ~ rad( N, F - F) ~ 4 rad( N, F).

Proof This just follows from

rad( N, F) ~ rad( N, F - F) ~ diam( N, F - F)

~ 2 diam(N, F) ~ 4 radiN, F),

where diam( N, F) is defined by

diam( N, F) = sup diam{ Sf I Nf = y}.
y

The constant 4 is probably not optimal here. I

In the following we want to compare the numbers

e~on (S/ F) = inf Amax (SIl)

with the numbers

where S" runs through all nonadaptive methods and S~d runs through all
adaptive methods using information N consisting of n linear functionals.
We always assume that F is convex. First we note a connection between
these error bounds and the Gelfand widths. We skip the simple proof.

PROPOSITION 3. Let Fe X be a convex set and let S: X ~ Y be linear
and continuous. Then

and
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Remarks. (a) Assume that F is convex and symmetric. Then the result
is well known. Because of (2.7) we have

in this case and it follows that adaption can help only by a factor of two
since

This is known from [7,36]. See Kon and Novak [13,14] and Traub,
Wasilkowski, Wozniakowski [35] for further results.

(b) In the next section we will present examples where adaptive
methods are much better than nonadaptive ones.

4. ON THE ADAPTION PROBLEM

Our next example shows that adaptive methods may be much better
than nonadaptive methods. This example was constructed to demonstrate
the superiority of adaptive methods. We do not know, whether it is "worst
possible" for nonadaptive methods. We mention that a similar example is
contained in Novak [25].

EXAMPLE 2. Let X = I x and

F= SX E X I Xi ~O,I Xi (; I, X k ~ X2k, X k ~ X2k + i}'l 1= I

Let ei be the sequence defined by e~ = c5 ik . For mEN we obtain

e'!m E F -F, i=l, ...,2"'-i.

Now we use a result of Kashin [11 ] (see Pinkus [28]) on the Gelfand
numbers of the octahedron 0" = {x E R" I L: Ix,l ,::;; I} in the Ix -norm,
namely

Therefore for mEN we conclude that
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From this we easily derive the lower bound

401

for the global Gelfand width of F. For the local widths we clearly have the
estimate

since F is contained in the set which was studied in Example I. Assume
now that we want to reconstruct x E F in 1~ -norm using (adaptively or
nonadaptively) linear functionals as information. That is, S = Id. For the
error of optimal nonadaptive methods we have the lower bound

Now we describe an adaptive method which is much better. For simplicity
we assume here that n = 2m - I is odd. By J i we mean the functional
15;(x) = X;. First we describe the functionals L i which are of the form
L;=15". Take L 1 =15 1 , Suppose that L,(:r) = x,, are already computed for
1~ i ~ 2k - I. Define

and

Take L2k=b2ik and L2k+J=b2ik+" i.e., 12k =2}k and 12k + I =2},,+1. We
obtain

and from xi>? X2i! and xi>? x 2j, + 1 we conclude that

(4.1 )

We consider the adaptive information

= (x 1 ' X 2 ~ X ~, x 2h' x ~h + 1 , ... , x '2:im J + 1 ).



402 ERICH NOVAK

The I; are distinct because, aside from 1\, they come in pairs of the form 2jk
and 2jk + 1, where 2jk is always an index not chosen before.

The set h has the following property. Assume that I is any coordinate
not contained in {lhI2, ...,12k-d. Then there is a jEJk with X,~Xj'

The simple proof of this fact would use induction and a partial order
on N, defined by the dyadic expansion. Consider, for example, the case
where 1=86 is not contained in {/ 1 ,/2, ...,12k-I}' Then, depending on k,
exactly one of the indices 1,2,5, 10,21, or 43 is in J k and the respective
coordinate is at least as large as x,. In particular we obtain x, ~ xjk

andjkrfJk+]'
Together with (4.1) this means that X,~Xj for at least k distinct values

of j and we obtain

So for n = 2m - 1 we get x, ~ l/(m + 1) = 2/(n + 3) for all I different from
the x'l' ... , x'n' Hence we can reconstruct x from the information N n up to
an error of 1/(2m + 2) = I/(n + 3), i.e., we have found a method with

EXAMPLE 1 (continuation). In Proposition 3 we obtained only a one
sided estimate of the error of optimal adaptive methods through the
local widths. Can we also prove an upper bound for the error of optimal
adaptive methods through the local widths? To answer this question
it is enough to study S = Id: F --> 1x' where F is as in Example 1. We claim
that

holds for all n. This means that we have an example with e~d (SI F) ::=::

n· d~oc(SIF)'

Proof Because diam(F) = 1 it is enough to show that e:d(SIF)~!'

Assume that N: F --> R n is some adaptive information. We have to prove
that

sup diam{x E F I N(x) = z} = 1.
zE an

For each x E F, let

N(x)=(L1(x), ..., LJX")),



OPTIMAL RECOVERY AND ll-WIDTHS 403

where L j depends on L], ..., L j _] and on the values L] (x), ... , L;_ I (x). The
L; can also be considered as functionals on ('0' the space of convergent
sequences, and therefore are of the form

Lj(x) = L a;xj
j~ I

(forxEF)

with (aj) j ENE II' Now let j I be an index such that

for all j.

We can assume that the functional L I has the form

L1(x)=xh + L a)xj

i#i1

(4.2)

with laJI~ 1 for all j. Observe that (4.2) is true for all x E F := Fo because
the first functional L I is independent of x. Consider the x E Fo for which
L 1 (;1;) = ('I for some small positive ('I and put

For our later analysis it is convenient to assume that

('I = 3" - I ·0,

where t:5 > 0 is sufficiently small that

(4.3)

In this case the set F 1 is not empty. The second functional L 2 is well
defined on F] since it only depends on L 1 and (,]. We can assume that this
linear functional is of the form x 1-+ L:;':: I a; Xi with a;l =: O. If a~ =1= a then we
can consider L 2 + 'XL I instead of the original L2 without essentially
changing the information operator. By multiplying with a constant we now
even assume that

L 2 (x)=xj,+ I a}xj

j¢ lil ..i~}

with laJI ~ 1 for all j. Let

and consider the set
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The set F 2 is nonempty since there is a (unique) x E F2 whose only nonzero
coordinates are xi, and xi,' The functional L J is well-defined on F2 since it
only depends on L 1 , L 2, C I' and C2' For general k we define

where L k is the next functional dependent on L 1 , ... , L k ._1 and c 1 , •.. , Ck 1

and Ck is defined by

(4.4)

The set F k is not empty since there is a (unique) x E F k whose only nonzero
coordinates are xii' ... , Xlk ·

We can and will assume that each L k is of the form

Lk(x)=X ik + L:
irt {jl, ···,jd

with distinct Jk and la~1 ~ 1 for all j.
Let k" be an index for which the coordinates a~" are small for all

i= 1, ..., n, i.e.,

for i = 1, ... , 11. (4.5)

The sequences (a\ are in Co and therefore such an index k" clearly exists.
We consider a sequence x with nonzero coordinates ''"iI' ... , xin and x kn =
C E [0, I]; i.e., we assume that Xi = 0 for all other i. We also assume that

U= I, ..., n).

It is easy to see that the sequence x E I c.< is uniquely defined by these
requirements for each given c. The nonzero coordinates of the sequence x
are given by the linear system

a'~-Ix. +x = -a': IC+C,,_I
ill }n JIl- I "II

We also have Xk
n
= c while all other coordinates are zero. By (4.5) and

o~ c ~ I we know that all terms of the form la~" ci are bounded by 6. Using
(4.4), for the unique solution of the system we get the estimates
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O<x)" <2h

O<X)._I <M

We obtain

I x),<2n.3 n
-

'
h

I~ I

and conclude from (4.3) that x E Fn for all c = x k • with

o~ c ~ I - 2n· 3" - 115.

405

Thus sUPoeR"diam{xEFI N(x)==}? 1-2n·3,,-IJ for each 15>0 as in
(4.3). Letting 15 -> 0, we obtain our result. I

5. THE CASE OF RESTRICTED INFORMATION

In many practical cases, X is a Banach space of functions and only cer
tain linear functionals are available as information. Here we only consider
the case where all functionals

are continuous and form the set of available functionals; i.e., each L; is of
the form L, = J y , Hence we study methods of the form

(5.1 )

and define the error bounds

and

where the infimum runs through all nonadaptive or adaptive methods of
the form (5.1 ), respectively. Here we only give some examples and therefore
we do not define any new n-widths with a restriction to the type of
admissible subspaces. The numbers e~on (5/ F) can be estimated from
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above by the Kolmogorov widths dl! (F), even if S is nonlinear; see
Novak [22, 23]. The estimate for the case of a linear functional was also
found by Belinskii [5].

The following example shows that adaptive methods may be exponen
tially better than nonadaptive ones.

EXAMPLE 3. Again we consider S = Id : F -+ If with

F= {XE X IXi~O,£ x,::::: 1, Xk ~X2k' Xk ~X2k+ I}'
. 1= J

but now we only allow methods of the form (5.1). We already proved that

1e" (SI .)<_..
• <1 F '" 3n+

and it is not difficult to see that the nonadaptive information

is optimal among all nonadaptive information operators. It follows, In

particular, that

I
e~"n (SI/') ~ log( 11 + I )

EXAMPLE 4. We mention the following example from Korneichuk [16],
which is closer to the standard classes of approximation theory. Consider
the reconstruction problem S = Id : F -> Lx ([ 0, 1]) for

F= {f: [0, I] -+ [0,1] Ifmonotone and If(x) - f(Y)I::::: Ix- yl'}

with 0 < ex < 1. This problem can be solved adaptively using the bisection
method, while nonadaptive methods are worse. Korneichuk [16] proved,
more exactly, that

while e~d (SI p) ~ n -I log n.
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